Graph Convergence for H(.,.)-co-Accretive Mapping with over-Relaxed Proximal Point Method for Solving a Generalized Variational Inclusion Problem
نویسندگان
چکیده مقاله:
In this paper, we use the concept of graph convergence of H(.,.)-co-accretive mapping introduced by [R. Ahmad, M. Akram, M. Dilshad, Graph convergence for the H(.,.)-co-accretive mapping with an application, Bull. Malays. Math. Sci. Soc., doi: 10.1007/s40840-014-0103-z, 2014$] and define an over-relaxed proximal point method to obtain the solution of a generalized variational inclusion problem in Banach spaces. Our results can be viewed as an extension of some previously known results in this direction.
منابع مشابه
graph convergence for h(.,.)-co-accretive mapping with over-relaxed proximal point method for solving a generalized variational inclusion problem
in this paper, we use the concept of graph convergence of h(.,.)-co-accretive mapping introduced by [r. ahmad, m. akram, m. dilshad, graph convergence for the h(.,.)-co-accretive mapping with an application, bull. malays. math. sci. soc., doi: 10.1007/s40840-014-0103-z, 2014$] and define an over-relaxed proximal point method to obtain the solution of a generalized variational inclusion problem ...
متن کاملThe fuzzy over-relaxed proximal point iterative scheme for generalized variational inclusion with fuzzy mappings
This paper deals with the introduction of a fuzzy over-relaxed proximal point iterative scheme based on H(·, ·)-cocoercivity framework for solving a generalized variational inclusion problem with fuzzy mappings. The resolvent operator technique is used to approximate the solution of generalized variational inclusion problem with fuzzy mappings and convergence of the iterative sequences generate...
متن کاملRelaxed resolvent operator for solving a variational inclusion problem
In this paper, we introduce a new resolvent operator and we call it relaxed resolvent operator. We prove that relaxed resolvent operator is single-valued and Lipschitz continuous and finally we approximate the solution of a variational inclusion problem in Hilbert spaces by defining an iterative algorithm based on relaxed resolvent operator. A few concepts like Lipschitz continuity and strong m...
متن کاملApplication of variational iteration method for solving singular two point boundary value problem
DEA methodology allows DMUs to select the weights freely, so in the optimalsolution we may see many zeros in the optimal weight. to overcome this prob-lem, there are some methods, but they are not suitable for evaluating DMUswith fuzzy data. In this paper, we propose a new method for solving fuzzyDEA models with restricted multipliers with less computation, and comparethis method with Liu''''''...
متن کاملGeneralized iterative methods for solving double saddle point problem
In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...
متن کاملGeneralized Relaxed Proximal Point Algorithms Involving Relative Maximal Accretive Models with Applications in Banach Spaces
General models for the relaxed proximal point algorithm using the notion of relative maximal accretiveness (RMA) are developed, and then the convergence analysis for these models in the context of solving a general class of nonlinear inclusion problems differs significantly than that of Rockafellar (1976), where the local Lipschitz continuity at zero is adopted instead. Moreover, our approach n...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 12 شماره None
صفحات 35- 46
تاریخ انتشار 2017-04
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023